Multivariate Modeling (MVM): A Comprehensive Approach to Group Analysis

Gang Chen, Ph.D.

Scientific and Statistical Computational Core

National Institute of Mental Health

National Institutes of Health, USA

http://afni.nimh.nih.gov/sscc/gangc

Poster number 3606

Standby time: 12:45 – 14:45

Wednesday June 11

Also display time: Thursday

Group Analysis in Neurolmaging: why big models?

- ♦ Various group analysis approaches
 - Student's t-test: one-, two-sample, and paired
 - ANOVA: one or more categorical explanatory variables (factors)
 - GLM: AN(C)OVA
 - LME: linear mixed-effects modeling
- - Too tedious when layout is too complex
 - Main effects and interactions: desirable
 - When quantitative covariates are involved
- ♦ Advantages of big models: AN(C)OVA, GLM, LME
 - All tests in one analysis (vs. piecemeal t-tests)
 - Omnibus F-statistics
 - Power gain: combining subjects across groups

Piecemeal t-tests: 2 × 3 Mixed ANCOVA

- - Factor A (Group): 2 levels (patient and control)
 - Factor B (Condition): 3 levels (pos, neg, neu)
 - Factor S (Subject): 15 ASD children and 15 healthy controls
 - Quantitative covariate: Age
- ♦ Multiple t-tests
 - Group comparison + age effect
 - Pairwise comparisons among three conditions
 - Effects that cannot be analyzed
 - Main effect of Condition
 - Interaction between Group and Condition
 - Age effect across three conditions

Classical ANOVA: 2 × 3 Mixed ANCOVA

- Factor A (Group): 2 levels (patient and control)
- Factor B (Condition): 3 levels (pos, neg, neu)
- Factor S (Subject): 15 ASD children and 15 healthy controls
- Quantitative covariate (Age): cannot be modeled with ANOVA

$$F_{(a-1,a(n-1))}(A) = \frac{MSA}{MSS(A)},$$

$$F_{(b-1,a(b-1)(n-1))}(B) = \frac{MSB}{MSE},$$

$$F_{((a-1)(b-1),a(b-1)(n-1))}(AB) = \frac{MSAB}{MSE},$$

where

$$\begin{split} MSA &= \frac{SSA}{a-1} = \frac{1}{a-1} (\frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2} - \frac{1}{abn} Y_{...}^{2}), \\ MSB &= \frac{SSB}{b-1} = \frac{1}{b-1} (\frac{1}{an} \sum_{k=1}^{b} Y_{..k}^{2} - \frac{1}{abn} Y_{...}^{2}), \\ MSAB &= \frac{SSAB}{(a-1)(b-1)} = \frac{1}{(a-1)(b-1)} (\frac{1}{n} \sum_{j=1}^{a} \sum_{k=1}^{b} Y_{.jk} - \frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2} - \frac{1}{an} \sum_{k=1}^{b} Y_{...k}^{2} + \frac{1}{abn} Y_{...}^{2}), \\ MSS(A) &= \frac{SSS(A)}{a(n-1)} = \frac{1}{a(n-1)} (\frac{1}{b} \sum_{i=1}^{n} \sum_{j=1}^{a} Y_{ij.}^{2} - \frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2}), \\ MSE &= \frac{1}{a(b-1)(n-1)} (\sum_{i=1}^{n} \sum_{j=1}^{a} \sum_{k=1}^{b} Y_{ijk}^{2} - \frac{1}{n} \sum_{i=1}^{a} \sum_{k=1}^{b} Y_{.jk} - \frac{1}{b} \sum_{i=1}^{a} \sum_{i=1}^{a} Y_{ij.}^{2} + \frac{1}{bn} \sum_{i=1}^{a} Y_{.j.}^{2} + \frac{1}{abn} Y_{...}^{2}). \end{split}$$

Univariate GLM: 2 x 3 mixed ANOVA

- Group: 2 levels (patient and control)
- Condition: 3 levels (pos, neg, neu)

Difficult to incorporate covariates

Subject: 3 ASD children and 3 healthy controls

Subj			X_0	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9		
1	β_{11}		$\int 1$	1	1	0	1	0	1	0	0	0 \	1	δ_{11}
1	β_{12}		1	1	0	1	0	1	1	0	0	0		δ_{12}
1	β_{13}		1	1	-1	-1	-1	-1	1	0	0	0		δ_{13}
2	β_{21}		1	1	1	0	1	0	0	1	0	0		δ_{21}
2	β_{22}		1	1	0	1	0	1	0	1	0	0	$\langle \alpha_0 \rangle$	δ_{22}
2	β_{23}		1	1	-1	-1	-1	-1	0	1	0	0	α_1	δ_{23}
3	β_{31}		1	1	1	0	1	0	-1	-1	0	0	α_2	δ_{31}
3	β_{32}		1	1	0	1	0	1	-1	-1	0	0	α_3	δ_{32}
3	J 22		1	1	-1	-1	-1	-1	-1	-1	0	0	<i>x</i> ₄	\tilde{j}_3
4	341	=	1	-1	1	0	-1	0	0	0	1	0	+	841
4	β_{42}		1	-1	0	1	0	-1	0	0	1	0	α_6	δ_{42}
4	β_{43}		1	-1	-1	-1	1	1	0	0	1	0	α_7	δ_{43}
5	β_{51}		1	-1	1	0	-1	0	0	0	0	1	α_8	δ_{51}
5	β_{52}		1	-1	0	1	0	-1	0	0	0	1	$\left(\alpha_{9}\right)$	δ_{52}
5	β_{53}		1	-1	-1	-1	1	1	0	0	0	1	` ′	δ_{53}
6	β_{61}		1	-1	1	0	-1	0	0	0	-1	-1		δ_{61}
6	β_{62}		1	-1	0	1	0	-1	0	0	-1	-1		δ_{62}
6	β_{63}		\ 1	-1	-1	-1	1	1	0	0	-1	-1		$\left(\delta_{63}\right)$

Our Approach: Multivariate GLM

- Group: 2 levels (patient and control)
- Condition: 3 levels (pos, neg, neu)
- Subject: 3 ASD children and 3 healthy controls
- Age: quanţitative covariate

$$\boldsymbol{B}_{n \times m} = \boldsymbol{X}_{n \times q} \boldsymbol{A}_{q \times m} + \boldsymbol{D}_{n \times m}$$

Univariate GLM: popular in neuroimaging

- ♦ Advantages: more flexible than the method of sums of squares
 - No limit on the the number of explanatory variables (in principle)
 - Easy to handle unbalanced designs
 - Covariates can be modeled when no within-subject factors present
- ♦ Disadvantages: costs paid for the flexibility
 - Intricate dummy coding
 - Tedious pairing for numerator and denominator of F-stat
 - Proper denominator SS
 - Can't generalize (in practice) to any number of explanatory variables
 - Susceptible to invalid formulations and problematic post hoc tests
 - Cannot handle covariates in the presence of within-subject factors
 - No direct approach to correcting for sphericity violation
 - Unrealistic assumption: same variance-covariance structure
- ♦ Problematic: When residual SS is adopted for all tests
 - F-stat: valid only for highest order interaction of within-subject factors
 - Most post hoc tests are inappropriate

Group Analysis: when GLM is not enough?

- - 3 between-subjects factors
 - Group: adult, child; Diagnosis: healthy, anxious; Scanner: scanners 1 and 2
 - 2 within-subject factors: 3 × 3 at the individual level
 - Stimulus category: human, animal, tool; Emotion: pos, neg, neu
 - 1 quantitative covariate: Age
 - > 200 post-hoc tests + F-stats for main effects and interactions
 - Piecemeal t-test approach would not work
- Three difficulties: most packages cannot properly handle
 - Number of explanatory variables (factors and covariates): 6
 - Covariates in the presence of within-subject factors
 - Sphericity violation when > 2 levels for a within-subject factor
 - No direct method available under GLM
 - Presumption: same variance-covariance structure across the brain

Multivariate GLM for Univariate GLM / AN(C)OVA

- - Centroid testing for a within-subject factor with m levels
 - One-sample H_0 : $(a_{pos}, a_{neg}, a_{neu}) = (0, 0, 0)$
 - Two-sample H_0 : $(a_{1pos}, a_{1neg}, a_{1neu}) = (a_{2pos}, a_{2neg}, a_{2neu})$
 - Usually not of interest for neuroimaging group analysis; instead
 - Main effect H_0 : $a_{pos} = a_{neg} = a_{neu}$
 - Interaction H_0 : a_{1pos} - a_{2pos} = a_{1neg} - a_{2neg} = a_{1neu} - a_{2neu}
- \Rightarrow Hypothesis formulation H_0 : $L_{u \times q} A_{q \times m} R_{m \times v} = C_{u \times v}$
 - \circ $L_{u\times q}$: weights for BS variables (groups and covariates)
 - \circ $R_{m\times v}$: weights for WS factor levels
 - Example: 2 x 3 mixed ANOVA
 - o Construct statistics based on Sum of Interaction A:B $L_{A:B} = (0,1,0), R_{A:B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & -1 \end{pmatrix}$ Squares and Products (SSP) matrices

Main Effect of A - $\mathbf{L}_A = (0, 1, 0), \mathbf{R}_A = (1, 1, 1)^T$

Main Effect of B - $L_B = (1, 0, 0), R_B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & -1 \end{pmatrix}$

H and **E** for Hypothesis (SSPH) and Errors (SSPE)

Multivariate GLM for Univariate Testing

- ♦ Univariate testing (UVT) for AN(C)OVA under MVM
 - $F: tr[H(R^TR)^{-1}] / tr[E(R^TR)^{-1}]$ scaled by DFs
- ♦ Bonuses in terms of modeling capability
 - No limit on the number of factors and covariates
 - Covariates can be modeled in presence of within-subject factors
 - Pairing for numerator and denominator of F-stats is automatic
 - Classical methods of correction for sphericity violations:
 Greenhouse-Geisser (GG) and Huynh-Feld (HF)
 - Convenient to perform post hoc tests
 - Multiple estimates of an effect (e.g., runs) handled automatically
 - Extra bonus: within-subject multivariate testing complementary to traditional UVT when sphericity violation is severe

Multivariate Testing under MVM

- Any effect involving a within-subject factor converted to a multivariate hypothesis: 2 x 3 mixed ANOVA
 - \circ Main effect B H_0 : $a_{pos} = a_{neg} = a_{neu}$ H_0 : $a_{pos} a_{neu} = 0$, $a_{neg} a_{neu} = 0$
 - o Interaction H_0 : a_{1pos} - a_{2pos} = a_{1neg} - a_{2neg} = a_{1neu} - a_{2neu} -
- ♦ When HDR estimated with multiple basis functions
 - Univariate testing by reduction to scalar
 - Area under the curve (AUC)
 - Principal component
 - Summarized measure (Calhoun et al., 2004)
 - Comprehensive approach under MVM
 - AUC, main effect, interaction, MVT
- Other cases: multiple functional connectivity networks, multimodality data analysis

MVM Implementation in AFNI

- ♦ Program 3dMVM
 - Command line
 - Symbolic coding for variables and post hoc testing

Post hoc tests

					•	
3dMVM	-prefix	OutputFile	-jobs 8	-SC		
	-bsVars	'Grp*Age'	-wsVars	'Cond'	-qVars 'Age	7
	-num_glt 4					
	-gltLabel 1	Pat_Pos	-gltCode 1		$^{\prime}\mathrm{Grp}:$	1*Pat Cond: 1*Pos
	-gltLabel 2	Ctl_Pos-Neg	-gltCode 2		'Grp: 1*Ctl ($Cond: 1*Pos - 1*Neg^{2}$
	-gltLabel 3	GrpD_Pos-Neg	-gltCode 3	$^{\prime}\mathrm{Grp}:$	1*Ctl -1*Pat ($Cond: 1*Pos - 1*Neg^{2}$
	-gltLabel 4	$\mathtt{Pat}_{ extsf{A}}ge$	-gltCode 4			'Grp: 1*Pat Age:'
	-dataTable					
	Subj	Grp	Age	Cond	InputFile	
	S1	Ctl	23	Pos	S1_Pos.nii	
	C 1	C+1	0.2	Mam	C1 Nom mii	

Subj	Grp	Age	Cond	InputFile
S1	Ctl	23	Pos	S1_Pos.nii
S1	Ctl	23	Neg	S1_Neg.nii
S1	Ctl	23	Neu	S1_Neu.nii
S50	Pat	19	Pos	S50_Pos.nii
S50	Pat	19	Neg	S50_Neg.nii
S50	Pat	19	Neu	S50_Neu.nii

Data layout

Summary

- ♦ Advantages of MVM
 - No limit on the number of explanatory variables
 - Covariates modeled even in the presence of within-subject factors
 - Voxel-wise covariate (e.g., SFNR) allowed
 - Voxel-wise sphericity correction for UVT
 - Easy and automatic formulation of testing statistics
 - Within-subject MVT as complementary testing
 - MVT: HDR modeled with multiple basis functions
- ♦ The user only provides information
 - Explanatory variable types: between- / within-subject, covariate
 - Centering options for quantitative covariates
 - Post hoc tests via symbolic coding
 - Data table listing variables and input files
- The user does not need to be involved in specifying
 - regressors, design matrix, and post hoc tests via regressors

Lastly

♦ Acknowledgements

- Robert C. Cox, Ph.D.
- Ziad S. Saad, Ph.D.
- Nancy E. Adleman, Ph.D.
- Ellen Leibenluft, M.D.

Statistical computational language and environment R

♦ More information

- Poster number 3606:
 - Standby time: 12:45 14:45 Wednesday June 11
 - Also display time: Thursday, June 12
- Website: http://afni.nimh.nih.gov/sscc/gangc
- Paper: Chen et al., Applications of Multivariate Modeling to Neuroimaging Group Analysis: A Comprehensive Alternative to Univariate General Linear Model, NeuroImage (reviewer 1 permitting)

